Uniform amenability and hyperfiniteness of
treeable equivalence relations

Andrea Vaccaro
joint with Petr Naryshkin

Universitat Miinster



Let X be a standard Borel space
and let E C X2 be a countable
Borel equivalence relation
(CBER).



Let X be a standard Borel space
and let E C X2 be a countable
Borel equivalence relation
(CBER).

We are interested in
hyperfiniteness of treeable
CBERs.

@ E is hyperfinite if E = J°, E,
where E, C E,;1 and each E, is a
finite CBER.

@ E is treeable if there is an acyclic
Borel graph G = (X, R) such that
E = Eg.



Let X be a standard Borel space
and let E C X2 be a countable
Borel equivalence relation
(CBER).

We are interested in
hyperfiniteness of treeable
CBERs.

@ E is hyperfinite if E = J°, E,
where E, C E,+1 and each E, is a
finite CBER.

@ E is treeable if there is an acyclic
Borel graph G = (X, R) such that
E=E;.

A tree with a cycle.
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Hyperiniteness, Treeability, Amenability

Hyperfinite CBERs are treeable and amenable.
Weiss 1984, Slaman—Steel, 1988: E is hyperfinite iff E = E%, for
some Borel Z ~ X.

Treeable CBERs are not hyperfinite in general (e.g. the free part of
the shift action F, ~ 2F2).

Hyperfinite CBERs are moreover (Frechet-)amenable, as defined
by Jackson—Kechris—Louveau. Whether the vice versa holds is
among the most challenging open questions in the subject.

Connes—Feldman—Weiss, 1981: If G is countable amenable and
G ~ X is Borel, then Eé-( is pu-hyperfinite,
w e M(X).

Weiss, 1984 Suppose G is countable, amenable and G ~ X is
Borel. Is Eé hyperfinite?

The answer is known to be positive for many classes of groups.
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Amenable actions, amenable CBERs

The connection between hyperfiniteness and amenability goes
beyond the case of amenable group actions.
Dougherty—Jackson—Kechris, 1994: E,?2F2, where Fo ~ OF; is the
canonical (amenable!) action on the Gromov
boundary of the free group, is hyperfinite.
Marquis—Sabok, 2020: EgG is hyperfinite, for the boundary action
G ~ 0G of any finitely generated hyperbolic group.
The latter result has been expanded in several directions (e.g.
Karpinski, Naryshkin—V., Oyakawa).
Jackson—Kechris—Louveau, 2002: Are amenable treeable CBERs
hyperfinite?
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Let G = (X, R) be an acyclic Borel graph with bounded degree. If
Eg is uniformly amenable with respect to pg, then
asdimg(X, pg) < oo, and in particular Eg is hyperfinite.

Corollary (Naryshkin-V., 2025)

Let F, ~ X be a continuous, free, amenable action on a
o-compact Polish space. Then E,f—i is hyperfinite.

Corollary (Naryshkin-V., 2025)

Let G be a countable amenable group and G ~ X a Borel action.
If Eé is treeable, then it is hyperfinite.
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Some notation

A Borel extended metric space (X, p) is a standard Borel set
with a Borel metric p that can also have value cc.

E,:={(x,y) € X*: p(x,y) < oo}

Example. A Borel graph G = (X, R) with the shortest path metric
pg- In this case E,; = Eg.

If G is a finitely generated group with finite symmetric set of
generators S, and G ~ X is a Borel action, the Schreier graph
G = (X, R) is defined as

xRy <= dg € S\ {e} such that gx = y.
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Definition (Conley—Jackson—Marks—Seward—Tucker-Drob, 2023)

Let (X, p) be an extended metric space. The Borel asymptotic
dimension of (X, p), denoted asdimpg(X, p), is the smallest d € N
such that for every r > 0 there is a p-uniformly bounded Borel
equivalence relation E such that B,(x, r) meets at most d + 1
E-classes, and it is co if no such d exists.

Theorem (Conley—Jackson—Marks—Seward—Tucker-Drob, 2023)

If (X, p) is proper and asdimp(X, p) < oo then E, is hyperfinite.

Theorem (Conley—Jackson—Marks—Seward—Tucker-Drob, 2023)

If (pn)S2 are proper Borel extended metrics on X such that
Pn < pny1, Ep = Up21 Ep, and asdimp(X, pn) < oo, then E, is
hyperfinite.
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Uniform amenability

Definition (Naryshkin-V., 2025)

Let (X, p) be a Borel extended metric space and let E be a CBER.
E is uniformly amenable with respect to p if E C E, and if
there are Borel maps

An: E—10,1], neN,

such that, with X, () := An(x, ),
0 Mnx € A([x]g) and [|Anx|l1 = 1, for every x € X
® SUP{(x,y)cE:p(x,y)<r} [Anx — Anyllz — O, for every r > 0.

Uniform amenability differs from amenability because of (2),
where the latter only requires

[Anx — Anyll1 =0, for all xEy.
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Uniformly amenable CBERs

Proposition

Let G be a finitely generated amenable group, let G ~ X be a
Borel action and let G be the Schreier graph generated by a finite
symmetric set of generators of G. Then EZ is uniformly amenable
with respect to pg.

Poof. Let (F,)o2; be a Fglner sequence, and set
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1
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Proposition

Let G be a finitely generated group G, X a compact Polish group
and G ~ X a continuous, amenable action. If G is as above, then
EX is uniformly amenable with respect to pg.



The main results (again)

Theorem (Naryshkin=V., 2025)

Let G = (X, R) be an acyclic Borel graph with bounded degree. If
Eg is uniformly amenable with respect to pg, then
asdimg(X, pg) < oo, and in particular Eg is hyperfinite.

Corollary (Naryshkin-V., 2025)

Let Fy, ~ X be a continuous free action on a o-compact Polish
space. If E,f—i is amenable, then it is hyperfinite.

Corollary (Naryshkin-V., 2025)

Let G be a countable amenable group and G ~ X a Borel action.
If Eé is treeable, then it is hyperfinite.
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Let G = (X, R) be a Borel graph. A Borel orientation is a Borel
subset R C R such that RN R*=¢and RUR1=R.

Proposition

Let G = (X, R) be a Borel graph with bounded degree. If G has a
Borel orientation with out-degree at most 1, then
asdimg(X, pg) < 1.




Proposition (Conley—Jackson—Marks—Seward—Tucker-Drob)
Suppose that f: X — X is Borel and bounded-to-one, and
Gr = (X, Rf) where xRy iff f(x) =y or f(y) = x. Then
anl'mB(X,pgf) <1



Proposition (Conley—Jackson—Marks—Seward—Tucker-Drob)

Suppose that f: X — X is Borel and bounded-to-one, and
Gr = (X, Rf) where xRy iff f(x) =y or f(y) = x. Then
animB(X,pgf) < 1.

Proposition

Let G = (X, R) be a Borel graph with bounded degree. If G has a
Borel orientation with out-degree at most 1, then
animB(X,pg) <1

Proof. G = G¢ where f is the following bounded-to-one Borel

function R
if xR

f(x) = {y N

x otherwise



Partial orientations

Let G = (X, R) be a Borel graph with bounded degree. Suppose
that for every r > 0 there is a Borel symmmetric @ C R such that

® pg(qo, q1) > r for all qo, q1 € Q distinct,
e (X,R\ Q) has a Borel orientation with out-degree at most 1.
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Partial orientations

Let G = (X, R) be a Borel graph with bounded degree. Suppose
that for every r > 0 there is a Borel symmmetric @ C R such that

® pg(qo, q1) > r for all qo, q1 € Q distinct,
e (X,R\ Q) has a Borel orientation with out-degree at most 1.
Then asdimg(X, pg) < 3.

r=3

B, (2)
%




Let G = (X, R) be an acylcic Borel graph of bounded degree and
such that Eg is uniformly amenable with respect to pg. Fix r > 0,
and find a Borel map

\: Eg — [0,1],
such that
o A\ € /2([x]g), IIXx|l1 = 1, for every x € X,
o A — Ayll1 < 1/120if pg(x,y) < r+2.



Let G = (X, R) be an acylcic Borel graph of bounded degree and
such that Eg is uniformly amenable with respect to pg. Fix r > 0,
and find a Borel map

A Eg — [0,1],
such that
o A\ € /2([x]g), IIXx|l1 = 1, for every x € X,
o A — Ayll1 < 1/120if pg(x,y) < r+2.
Take xRy.
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Let Gy = (X, R\ {(x,¥),(y,x)}). Then
Ml[Xlgy ) + Allylgy ) = 1 and Ay([Xlg,, ) + Ay(I¥lg,) =1



Let Ro == {(x,5) € R: A([x]g,, ) M (Ylg, ) € [5/12,7/12]} and
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Let Ro :={(x,y) € R: A([x]g, ): Ay(lvlg,,) ¢ [5/12,7/12]} and
orient xRoy only if Ax([x]g,,) < Ay(l¥lg, )

\’,\ NS (Lolz,u,

M

This has a number of consequences:

ﬁo has out-degree < 1. 5" ’#.X ”

Ax([Yolgy, ) + Ax(Iyilg,, ) > 1

Set 71 :—= R\ Ry. Then

degp (x) + deg°”t(x) <2. bo.] L‘i"—' [ .

Ax(0] g,y ) + Ax(ilgyy, ) + Ax(l2lgyy, ) >

1
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Set G1 = (X, Ry1), then deg(G1) < 2. Up to removing a very sparse
(and Borel) set of edges, we can assume that all connected
components of G are finite.

Case 1. [x]g, has only one leaf y with deg
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Case 2. [x]g, has no leaves with out-degree 1.
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Case 3. Both leaves in [x]|g, have out-degree 1.
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because of measure restrictions.
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components with two leaves with out-degree 1.
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Summarizing:

@ use the measure given by uniform amenability to define a
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@ enlarge the orientation so that the left-over, non-oriented part
Q is composed by a Borel set of sparse edges that make all
components of Gy finite, plus the ‘central’ edges in connected
components with two leaves with out-degree 1.

We are thus in position to apply

Proposition

Let G = (X, R) be a Borel graph with bounded degree. Suppose
that for every r > 0 there is a Borel symmmetric @ C R such that

® pg(qo,q1) > r for all qo,q1 € Q distinct,
e (X,R\ Q) has a Borel orientation with out-degree at most 1.
Then asdimg(X, pg) < 3.

Thank you!



