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Let X be a standard Borel space
and let E ⊆ X 2 be a countable
Borel equivalence relation
(CBER).

We are interested in
hyperfiniteness of treeable
CBERs.

E is hyperfinite if E =
⋃∞

n=1 En
where En ⊆ En+1 and each En is a
finite CBER.
E is treeable if there is an acyclic
Borel graph G = (X , R) such that
E = EG .

A tree with a cycle.
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Hyperiniteness, Treeability, Amenability

Hyperfinite CBERs are treeable and amenable.

Weiss 1984, Slaman–Steel, 1988: E is hyperfinite iff E = EX
Z , for

some Borel Z y X .
Treeable CBERs are not hyperfinite in general (e.g. the free part of
the shift action F2 y 2F2).

Hyperfinite CBERs are moreover (Frechet-)amenable, as defined
by Jackson–Kechris–Louveau. Whether the vice versa holds is
among the most challenging open questions in the subject.
Connes–Feldman–Weiss, 1981: If G is countable amenable and

G y X is Borel, then EX
G is µ-hyperfinite,

µ ∈ M(X ).
Weiss, 1984 Suppose G is countable, amenable and G y X is

Borel. Is EX
G hyperfinite?

The answer is known to be positive for many classes of groups.
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Amenable actions, amenable CBERs

The connection between hyperfiniteness and amenability goes
beyond the case of amenable group actions.

Dougherty–Jackson–Kechris, 1994: E∂F2
F2

, where F2 y ∂F2 is the
canonical (amenable!) action on the Gromov
boundary of the free group, is hyperfinite.

Marquis–Sabok, 2020: E∂G
G is hyperfinite, for the boundary action

G y ∂G of any finitely generated hyperbolic group.
The latter result has been expanded in several directions (e.g.
Karpinski, Naryshkin–V., Oyakawa).
Jackson–Kechris–Louveau, 2002: Are amenable treeable CBERs

hyperfinite?
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The main results

Theorem (Naryshkin–V., 2025)
Let G = (X ,R) be an acyclic Borel graph with bounded degree. If
EG is uniformly amenable with respect to ρG , then
asdimB(X , ρG) <∞, and in particular EG is hyperfinite.

Corollary (Naryshkin–V., 2025)
Let Fk y X be a continuous, free, amenable action on a
σ-compact Polish space. Then EX

Fk
is hyperfinite.

Corollary (Naryshkin–V., 2025)
Let G be a countable amenable group and G y X a Borel action.
If EX

G is treeable, then it is hyperfinite.
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Some notation

A Borel extended metric space (X , ρ) is a standard Borel set
with a Borel metric ρ that can also have value ∞.

Eρ := {(x , y) ∈ X 2 : ρ(x , y) <∞}.

Example. A Borel graph G = (X ,R) with the shortest path metric
ρG . In this case EρG = EG .

If G is a finitely generated group with finite symmetric set of
generators S, and G y X is a Borel action, the Schreier graph
G = (X ,R) is defined as

xRy ⇐⇒ ∃g ∈ S \ {e} such that gx = y .
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Borel asymptotic dimension

Definition (Conley–Jackson–Marks–Seward–Tucker-Drob, 2023)
Let (X , ρ) be an extended metric space. The Borel asymptotic
dimension of (X , ρ), denoted asdimB(X , ρ), is the smallest d ∈ N
such that for every r > 0 there is a ρ-uniformly bounded Borel
equivalence relation E such that Bρ(x , r) meets at most d + 1
E -classes, and it is ∞ if no such d exists.

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob, 2023)
If (X , ρ) is proper and asdimB(X , ρ) <∞ then Eρ is hyperfinite.

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob, 2023)
If (ρn)∞n=1 are proper Borel extended metrics on X such that
ρn ≤ ρn+1, Eρ =

⋃∞
n=1 Eρn and asdimB(X , ρn) <∞, then Eρ is

hyperfinite.
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Uniform amenability

Definition (Naryshkin–V., 2025)
Let (X , ρ) be a Borel extended metric space and let E be a CBER.
E is uniformly amenable with respect to ρ if E ⊆ Eρ and if
there are Borel maps

λn : E → [0, 1], n ∈ N,

such that, with λn,x (·) := λn(x , ·),
λn,x ∈ `1([x ]E ) and ‖λn,x‖1 = 1, for every x ∈ X
sup{(x ,y)∈E :ρ(x ,y)<r} ‖λn,x − λn,y‖1 → 0, for every r > 0.

Uniform amenability differs from amenability because of (2),
where the latter only requires

‖λn,x − λn,y‖1 → 0, for all xEy .
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Uniformly amenable CBERs
Proposition
Let G be a finitely generated amenable group, let G y X be a
Borel action and let G be the Schreier graph generated by a finite
symmetric set of generators of G. Then EX

G is uniformly amenable
with respect to ρG .

Poof. Let (Fn)∞n=1 be a Følner sequence, and set

λn : EG → [0, 1]

(x , y) 7→ 1
|Fn|
|{g ∈ Gn : gx = y}|

Proposition
Let G be a finitely generated group G, X a compact Polish group
and G y X a continuous, amenable action. If G is as above, then
EX

G is uniformly amenable with respect to ρG .
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The main results (again)

Theorem (Naryshkin–V., 2025)
Let G = (X ,R) be an acyclic Borel graph with bounded degree. If
EG is uniformly amenable with respect to ρG , then
asdimB(X , ρG) <∞, and in particular EG is hyperfinite.

Corollary (Naryshkin–V., 2025)
Let Fk y X be a continuous free action on a σ-compact Polish
space. If EX

Fk
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Borel orientations

Let G = (X ,R) be a Borel graph. A Borel orientation is a Borel
subset #»R ⊆ R such that #»R ∩ #»R−1 = ∅ and #»R ∪ #»R−1 = R.

Proposition
Let G = (X ,R) be a Borel graph with bounded degree. If G has a
Borel orientation with out-degree at most 1, then
asdimB(X , ρG) ≤ 1.
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Proposition (Conley–Jackson–Marks–Seward–Tucker-Drob)
Suppose that f : X → X is Borel and bounded-to-one, and
Gf = (X ,Rf ) where xRf y iff f (x) = y or f (y) = x. Then
asdimB(X , ρGf ) ≤ 1.

Proposition
Let G = (X ,R) be a Borel graph with bounded degree. If G has a
Borel orientation with out-degree at most 1, then
asdimB(X , ρG) ≤ 1.

Proof. G = Gf where f is the following bounded-to-one Borel
function

f (x) :=
{
y if x #»Ry
x otherwise
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Partial orientations
Proposition
Let G = (X ,R) be a Borel graph with bounded degree. Suppose
that for every r > 0 there is a Borel symmmetric Q ⊆ R such that

ρG(q0, q1) ≥ r for all q0, q1 ∈ Q distinct,
(X ,R \ Q) has a Borel orientation with out-degree at most 1.

Then asdimB(X , ρG) ≤ 3.
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Let G = (X ,R) be an acylcic Borel graph of bounded degree and
such that EG is uniformly amenable with respect to ρG . Fix r > 0,
and find a Borel map

λ : EG → [0, 1],

such that
λx ∈ `1([x ]G), ‖λx‖1 = 1, for every x ∈ X ,
‖λx − λy‖1 < 1/12 if ρG(x , y) < r + 2.

Take xRy .
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Let Gxy = (X ,R \ {(x , y), (y , x)}). Then
λx ([x ]Gxy ) + λx ([y ]Gxy ) = 1 and λy ([x ]Gxy ) + λy ([y ]Gxy ) = 1
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Let R0 := {(x , y) ∈ R : λx ([x ]Gxy ), λy ([y ]Gxy ) < [5/12, 7/12]} and
orient x #»R 0y only if λx ([x ]Gxy ) < λy ([y ]Gxy ).
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This has a number of consequences:

#»R 0 has out-degree ≤ 1.
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λx ([y0]Gxy0
) + λx ([y1]Gxy1

) > 1

Set R1 := R \ R0. Then
degR1(x) + degout

#»R 0
(x) ≤ 2. HI

it

e

λx ([y0]Gxy0
) + λx ([y1]Gxy1

) + λx ([y2]Gxy2
) > 1
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Set G1 = (X ,R1), then deg(G1) ≤ 2.

Up to removing a very sparse
(and Borel) set of edges, we can assume that all connected
components of G1 are finite.
Case 1. [x ]G1 has only one leaf y with degout

#»R 0
(y) = 1.

HI

it

e

Case 2. [x ]G1 has no leaves with out-degree 1.

HI

it

e

Case 3. Both leaves in [x ]G1 have out-degree 1.

HI

it

e

because of measure restrictions.
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Summarizing:
use the measure given by uniform amenability to define a
partial orientation.
enlarge the orientation so that the left-over, non-oriented part
Q is composed by a Borel set of sparse edges that make all
components of G1 finite, plus the ‘central’ edges in connected
components with two leaves with out-degree 1.

We are thus in position to apply

Proposition
Let G = (X ,R) be a Borel graph with bounded degree. Suppose
that for every r > 0 there is a Borel symmmetric Q ⊆ R such that

ρG(q0, q1) ≥ r for all q0, q1 ∈ Q distinct,
(X ,R \ Q) has a Borel orientation with out-degree at most 1.

Then asdimB(X , ρG) ≤ 3.

Thank you!
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